Scientists Discover New Dwarf Star That is Virtually an Earth-Sized Diamond

Artist impression of a white dwarf star in orbit with pulsar PSR J2222-0137. It may be the coolest and dimmest white dwarf ever identified.  Credit: B. Saxton (NRAO/AUI/NSF)

Artist impression of a white dwarf star in orbit with pulsar PSR J2222-0137. It may be the coolest and dimmest white dwarf ever identified.
Credit: B. Saxton (NRAO/AUI/NSF)

A team of researchers has identified possibly the coldest, faintest white dwarf star ever known. And this Earth-sized dwarf star is so cool that its carbon has crystallized, in effect, to a huge diamond in the space.

“It’s a really remarkable object,” said David Kaplan, a professor at the University of Wisconsin-Milwaukee. “These things should be out there, but because they are so dim they are very hard to find.” Kaplan and his colleagues found this stellar gem using the National Radio Astronomy Observatory’s (NRAO) Green Bank Telescope (GBT) and Very Long Baseline Array (VLBA) as well as other observatories.

White dwarfs are mostly composed of carbon and oxygen and are in an extremely dense end-state. For instance, if our Sun collapses to form an object approximately the size of the Earth, then it would become a dwarf star. White dwarfs slowly cool and fade over billions of years. The new dwarf star is likely the same age as the Milky Way, approximately 11 billion years old, astronomers said.

The existence of the diamond dwarf star was revealed when the researchers were observing a pulsar, first found by a graduate student, three years ago. Pulsars are rapidly spinning neutron stars, superdense remains of massive stars that have exploded as supernovas. As neutron stars spin, lighthouse-like beams of radio waves, streaming from the poles of its powerful magnetic field, sweep through space. When one of these beams sweep across the Earth, radio telescopes capture the pulse of radio waves.

The pulsar, dubbed PSR J2222-0137, was spinning more than 30 times each second and was gravitationally bound to a companion star, which was initially identified as either another neutron star or, more likely, an uncommonly cool white dwarf. The two were calculated to orbit each other once every 2.45 days.

The pulsar was then observed over a two-year period with the VLBA by Adam Deller, an astronomer at the Netherlands Institute for Radio Astronomy (ASTRON). These observations pinpointed its location and distance from the Earth at approximately 900 light-years away in the direction of the constellation Aquarius. This information was critical in refining the model used to time the arrival of the pulses at the Earth with the GBT.

Applying Einstein’s theory of relativity, researchers studied how the gravity of the companion warped space, causing delays in the radio signal as the pulsar passed behind it. These delayed travel times helped the researchers determine the orientation of their orbit and the individual masses of the two stars. The pulsar has a mass 1.2 times that of the Sun and the companion a mass 1.05 times that of the Sun. These data strongly indicated that the pulsar companion could not have been a second neutron star; the orbits were too orderly for a second supernova to have taken place. Knowing its location with such high precision and how bright a white dwarf should appear at that distance, the astronomers believed they should have been able to observe it in optical and infrared light.

Remarkably, neither the Southern Astrophysical Research (SOAR) telescope in Chile nor the 10-meter Keck telescope in Hawaii was able to detect it. “Our final image should show us a companion 100 times fainter than any other white dwarf orbiting a neutron star and about 10 times fainter than any known white dwarf, but we don’t see a thing,” said Bart Dunlap, a graduate student at the University of North Carolina at Chapel Hill and one of the team members. “If there’s a white dwarf there, and there almost certainly is, it must be extremely cold.” The researchers calculated that the white dwarf would be no more than a comparatively cool 3,000 degrees Kelvin (2,700 degrees Celsius). Our Sun is about 5,000 times hotter at its center.

Astronomers believe that such a cool, collapsed star would be largely crystallized carbon, not unlike a diamond. Other such stars have been identified and they are theoretically not that rare, but with a low intrinsic brightness, they can be decidedly difficult to detect. Its fortuitous location in a binary system with a neutron star enabled the team to identify this one.

A paper describing these results is published in the Astrophysical Journal.

Share this: